Minimax Linear Smoothing for Capacities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Observers for Linear DAEs

In this note we construct finite and infinite horizon minimax observers for a linear stationary DAE with deterministic, unknown, but bounded noise. By using generalized Kalman duality and geometric control we prove that the finite (infinite) horizon observer exists if and only if the DAE is observable (detectable). Remarkably, the regularity for the DAE is not required.

متن کامل

A truncated aggregate smoothing Newton method for minimax problems

Aggregate function is a useful smoothing function to the max-function of some smooth functions and has been used to solve minimax problems, linear and nonlinear programming, generalized complementarity problems, etc. The aggregate function is a single smooth but complicated function, its gradient and Hessian calculations are timeconsuming. In order to gain more efficient performance of aggregat...

متن کامل

Minimax designs for approximately linear regression

We consider the approximately linear regression model E b 1x1 = I(x) 0 + f(x), XE S, where f(x) is a non-linear disturbance restricted only by a bound on its &(S) norm, and where S is the design space. For loss functions which are monotonic functions of the mean squared error matrix, we derive a theory to guide in the construction of designs which minimize the maximum (over f) loss. We then spe...

متن کامل

Approximate Confidence Regions for Minimax-Linear Estimators

Minimax estimation is based on the idea that the quadratic risk func tion for the estimate is not minimized over the entire parameter space IR but only over an area B that is restricted by a priori knowledge If all restrictions de ne a convex area this area can often be enclosed in an ellipsoid of the form B f T rg The ellipsoid has a larger volume than the cuboid Hence the transition to an e...

متن کامل

Minimax Optimal Algorithms for Unconstrained Linear Optimization

We design and analyze minimax-optimal algorithms for online linear optimization games where the player’s choice is unconstrained. The player strives to minimize regret, the difference between his loss and the loss of a post-hoc benchmark strategy. While the standard benchmark is the loss of the best strategy chosen from a bounded comparator set, we consider a very broad range of benchmark funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1982

ISSN: 0091-1798

DOI: 10.1214/aop/1176993874